Abstract
Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelectric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs receive more attention because they offer distinct qualities over traditional magnet-coil-based motors, such as miniaturization, great accuracy, speed, non-magnetic nature, silent operation, straightforward construction, broad temperature operations, and adaptability. This review study focuses on the principle of USMs and their classifications, characterization, fabrication methods, applications, and future challenges. Firstly, the classifications of USMs, especially, standing-wave, traveling-wave, hybrid-mode, and multi-degree-of-freedom USMs, are summarized, and their respective functioning principles are explained. Secondly, finite element modeling analysis for design and performance predictions, conventional and nano/micro-fabrication methods, and various characterization methods are presented. Thirdly, their advantages, such as high accuracy, small size, and silent operation, and their benefits over conventional motors for the different specific applications are examined. Fourthly, the advantages and disadvantages of USMs are highlighted. In addition, their substantial contributions to a variety of technical fields like surgical robots and industrial, aerospace, and biomedical applications are introduced. Finally, their future prospects and challenges, as well as research directions in USM development, are outlined, with an emphasis on downsizing, increasing efficiency, and new materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.