Abstract
This work introduces an accurate linearized model and phase noise spectral analysis of digital bang-bang PLLs, that includes both the reference and the digitally-controlled oscillator (DCO) noise contributions. A time-domain analysis of bang-bang PLLs is leveraged to derive closed-form expressions for the integrated jitter, leading to a precise estimation of the binary phase detector (BPD) equivalent gain. The theoretical predictions differ by less than 1% from the simulation results obtained using a behavioral model, in all typical cases: dominant reference noise, dominant DCO noise, and comparable contributions. An accurate discrete-time model that takes into account the time-variant effect arising from the multirate nature of a digital phase-locked loop (DPLL) is used, along with the provided estimation of the jitter, to predict the output and input-referred phase noise spectra. An excellent match with the simulated spectra is achieved for all the different operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.