Abstract
This work investigated the performance of the integrated system (i.e., a Photocatalytic reactor followed by a Fixed bed bioreactor (PC-FBR)) for the degradation of complex Acid Blue 113 from wastewater. Initially, a Photocatalytic reactor was employed to improve the biodegradability index (i.e., BOD/COD) of wastewater from 0.21 ± 0.0062 to 0.395 ± 0.0058. The preliminary photocatalytic oxidation study revealed a maximum of 86.42 ± 0.33 % dye removal at TiO2 loading of 1.5 g/L and an initial concentration of 50 mg/L of AB 113. An integrated reactor system significantly achieved a maximum of 92 ± 2.6 % of dye removal efficiency under a retention time of 120 hr. The stand-alone FBR dye shock loading study suggested that the reactor system was reasonably able to further restore its degradation efficiency. Langmuir–Hinshelwood kinetic model, Monod model, and Andrew-Haldane model were fitted. The bacterial toxicity assessment was carried out using the Pseudomonas fluorescens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.