Abstract

We present a comprehensive study and evaluation of existing single image compression artifacts removal algorithms, using a new 4K resolution benchmark including diversified foreground objects and background scenes with rich structures, called Large-scale Ideal Ultra high definition 4K (LIU4K) benchmark. Compression artifacts removal, as a common post-processing technique, aims at alleviating undesirable artifacts such as blockiness, ringing, and banding caused by quantization and approximation in the compression process. In this work, a systematic listing of the reviewed methods is presented based on their basic models (handcrafted models and deep networks). The main contributions and novelties of these methods are highlighted, and the main development directions, including architectures, multi-domain sources, signal structures, and new targeted units, are summarized. Furthermore, based on a unified deep learning configuration (i.e. same training data, loss function, optimization algorithm, etc.), we evaluate recent deep learning-based methods based on diversified evaluation measures. The experimental results show the state-of-the-art performance comparison of existing methods based on both full-reference, non-reference and task-driven metrics. Our survey would give a comprehensive reference source for future research on single image compression artifacts removal and inspire new directions of the related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.