Abstract

Antipsychotic Induced Weight Gain (AIWG) is a common and severe side effect of many antipsychotic medications. Mitochondria play a vital role for whole-body energy homeostasis and there is increasing evidence that antipsychotics modulate mitochondrial function. This study aimed to examine the role of variants in nuclear-encoded mitochondrial genes and the mitochondrial DNA (mtDNA) in conferring risk for AIWG. We selected 168 European-Caucasian individuals from the CATIE sample based upon meeting criteria of multiple weight measures while taking selected antipsychotics (risperidone, quetiapine or olanzapine). We tested the association of 670 nuclear-encoded mitochondrial genes with weight change (%) using MAGMA software. Thirty of these genes showed nominally significant P-values (<0.05). We were able to replicate the association of three genes, CLPB, PARL, and ACAD10, with weight change (%) in an independent prospectively assessed AIWG sample. We analyzed mtDNA variants in a subset of 74 of these individuals using next-generation sequencing. No common or rare mtDNA variants were found to be significantly associated with weight change (%) in our sample. Additionally, analysis of mitochondrial haplogroups showed no association with weight change (%). In conclusion, our findings suggest nuclear-encoded mitochondrial genes play a role in AIWG. Replication in larger sample is required to validate our initial report of mtDNA variants in AIWG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.