Abstract

Robotic rehabilitation is advantageous as it allows for dynamic exercise routines that are more accurate and efficient than human-led routines. However, existing robotic wrist rehabilitation devices are often bulky and are tethered in rehabilitation centers. It is difficult to realize compact wearable wrist orthosis that is capable of inducing three degrees of freedom (DOF) of the wrist. This paper presents the first wearable wrist orthosis with three DOF driven by twisted string actuators (TSAs) using both stiff fishing lines and compliant super-coiled polymer (SCP) strings. The design considerations of the robotic wrist orthosis are provided in detail. Experiments are performed to characterize the compliance and force production of TSAs. The device is capable of inducing pronation or supination, flexion or extension, and abduction or adduction, with a range of 117.9°, 115.5°, and 73.4° respectively. In addition, it is demonstrated that the device can fully induce wrist movement of a human subject without the need of activating the human subject’s muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.