Abstract

<p>It is shown that any sequence psi_n of tautologies which expresses the<br />validity of a fixed combinatorial principle either is "easy" i.e. has polynomial<br />size tree-resolution proofs or is "difficult" i.e requires exponential<br />size tree-resolution proofs. It is shown that the class of tautologies which<br />are hard (for tree-resolution) is identical to the class of tautologies which<br />are based on combinatorial principles which are violated for infinite sets.<br />Actually it is shown that the gap-phenomena is valid for tautologies based<br />on infinite mathematical theories (i.e. not just based on a single proposition).<br />We clarify the link between translating combinatorial principles (or<br />more general statements from predicate logic) and the recent idea of using<br /> the symmetrical group to generate problems of propositional logic.<br />Finally, we show that it is undecidable whether a sequence psi_n (of the<br />kind we consider) has polynomial size tree-resolution proofs or requires<br />exponential size tree-resolution proofs. Also we show that the degree of<br />the polynomial in the polynomial size (in case it exists) is non-recursive,<br />but semi-decidable.</p><p>Keywords: Logical aspects of Complexity, Propositional proof complexity,<br />Resolution proofs.</p><p> </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.