Abstract

The full search motion estimation algorithm for video coding is a procedure of high computational cost. For this reason, in real-time low-power applications, low-cost motion estimation algorithms are viable solutions. A novel reduced complexity motion estimation algorithm is presented. It conjugates the reduction of computational load with good encoding efficiency. It exploits the past history of the motion field to predict the current motion field. A successive refinement phase gives the final motion field. This approach leads to a sensible reduction in the number of motion vector that have to be tested. The complexity is lower than any other algorithm algorithms known to the authors, in the literature, it is constant as there is no recursivity in the algorithm and independent of any search window area size. Experimental evaluations have shown the robustness of the algorithm when applied on a wide set of video sequences--a good performance compared to other reduced complexity algorithms and negligible loss of efficiency versus the full search algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.