Abstract

The problem of eliminating harmonics in a switching converter is considered. That is, given a desired fundamental output voltage, the problem is to find the switching times (angles) that produce the fundamental while not generating specifically chosen harmonics. In contrast to the well known work of Patel and Hoft and others, here all possible solutions to the problem are found. This is done by first converting the transcendental equations that specify the harmonic elimination problem into an equivalent set of polynomial equations. Then, using the mathematical theory of resultants, all solutions to this equivalent problem can be found. In particular, it is shown that there are new solutions that have not been previously reported in the literature. The complete solutions for both unipolar and bipolar switching patterns to eliminate the fifth and seventh harmonics are given. Finally, the unipolar case is again considered where the fifth, seventh, 11th, and 13th harmonics are eliminated along with corroborative experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.