Abstract

This paper considers the question of using a nonlinear complementary filter for attitude estimation of fixed-wing unmanned aerial vehicle (UAV) given only measurements from a low-cost inertial measurement unit. A nonlinear complementary filter is proposed that combines accelerometer output for low frequency attitude estimation with integrated gyrometer output for high frequency estimation. The raw accelerometer output includes a component corresponding to airframe acceleration, occurring primarily when the aircraft turns, as well as the gravitational acceleration that is required for the filter. The airframe acceleration is estimated using a simple centripetal force model (based on additional airspeed measurements), augmented by a first order dynamic model for angle-of-attack, and used to obtain estimates of the gravitational direction independent of the airplane manoeuvres. Experimental results are provided on a real-world data set and the performance of the filter is evaluated against the output from a full GPS/INS that was available for the data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.