Abstract

Aggressive transistor scaling down and near-threshold computing have rendered modern microprocessor susceptible to soft errors. Software approaches that protect computations against soft errors are desirable because they offer flexible protection and are suitable for mixed-critical systems. In particular, fine-grain instruction duplication based techniques are deemed to be most effective; however, many of the existing instruction duplication techniques either suffer from many vulnerable intervals or are not suitable for multithreaded environments. In this paper, we present multithreded near zero silent data corruption (MZDC), a software scheme which provides high-level processor-wide error coverage in multithreaded environments. MZDC duplicates all programs' instructions and uses diagnosis block after replicated memory operations to overcome the inconsistency issue in a multithread environment. Statistical fault injection experiments on a dual-core ARM cortex-A53 $\mu$ architecturally simulated microprocessor show that on average, MZDC can achieve more than 37 $\times$ better fault coverage than the state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.