Abstract

The accuracy of an I/Q based biomedical impedance sensing sensor (IQBIS) suffers significantly from the PVT effects of the analog front-end, such as the amplitude errors of the stimulation signals, gain mismatches, amplitude and phase imbalances of in-phase (I) and quadrature (Q) signals, etc. These practical effects will severely impede the system performance if handled improperly. In this paper, the degradations of sensing performance by such imperfections are mathematically analyzed and quantified. Following theoretical studies, a digitally controlled correction approach is proposed to finely alleviate these impairments. The performance of the proposed scheme had been verified using Simulink and MATLAB. With the proposed error correction scheme, the accuracy is improved by at least 17 times compared to that of the typical IQBIS, for both real and imaginary values of impedance. Thus, the proposed method is very useful for IQBIS, in resisting degradation in sensing accuracies due to the process-voltage-temperature (PVT) effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.