Abstract

Phenol is one of the most prevalent contaminants discovered in water bodies. The adsorption process is gaining popularity as a viable method of removing phenolic chemicals from contaminated aquatic resources. The elimination of phenolic chemicals using Palmyra kernel shell activated charcoal has been extensively investigated. The removal effectiveness of Palmyra kernel shell charcoal was calculated using physically, chemically (H3PO4 and NaOH) and magnetically activated Palmyra kernel shell charcoal for various amounts of phenolic components and varying adsorption durations. According to this research study, physically activated charcoal has a much higher removal efficiency than other activated charcoal. These findings show that physically activated charcoal is easily used to remove phenolic compounds from polluted water resources. Adsorption kinetics were discovered to follow a pseudo-second-order kinetic model. Freundlich, Langmuir, and Temkin isotherm models were used to interpret the experimental results. Several kinetic formulas were utilized to evaluate the adsorption kinetics of phenolic compounds using various activated charcoals derived from Palmyra kernel shells. The experimental results are consistent with the Freundlich isotherm model. All of the activated and non-activated Palmyra kernel shells absorbed the phenolic chemicals, and the value of 1/n was found to be between 0.692 to 0.869. Scanning Electron Microscopy (SEM) is a technique used to characterize the surface morphology of adsorbents before and after adsorption. FTIR analyses confirmed the presence of phenolic compound functional groups on the adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.