Abstract

In this paper, individual coal particle combustion under laminar conditions is simulated using models with various levels of complexity for the particle and gas phase chemical kinetics. The mass, momentum and energy governing equations are fully coupled between the particle and the gas phase. In the gas phase, detailed chemical kinetics based on GRI3.0 and infinitely-fast chemistry are considered and compared. For the particle phase, models for vaporization, devolatilization and char oxidation/gasification are considered, and the Kobayashi–Sarofim devolatilization model is compared to the Chemical Percolation Devolatilization (CPD) model. Ignition delay is used as a quantitative metric to compare the simulation prediction with experimental data, with careful attention given to the definition of ignition delay in the simulations. The effects of particle size, coal type and gas-phase temperature on the ignition delay are studied and compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.