Abstract

Natural source zone depletion (NSZD) encompasses all processes that result in petroleum hydrocarbon light non-aqueous phase liquid (LNAPL) mass loss. Vertical gas transport between the subsurface and atmosphere is a key component of NSZD. Gas exchange with the atmosphere may be restricted at sites with ground cover, which is typical for European fuel retail sites. This raises questions of whether, and to what extent, the generic NSZD conceptual model applies at these sites. Here, we present a study that evaluated how concrete and asphalt pavement affected NSZD processes and data interpretation for three NSZD assessment methods: soil gas concentration gradient, biogenic heat and carbon dioxide traps. All methods demonstrated that NSZD was occurring and NSZD rates were generally within the low end of values reported in the literature for unpaved sites. However, there was considerable variability in the rates, which highlights the need for careful examination of the conceptual site model and potential interferences for each method. The results demonstrate the viability of soil gas and temperature data collected from existing monitoring wells screened into the unsaturated zone without the need for additional, intrusive subsurface installations. The results also provide useful guidance for developing optimal long-term NSZD monitoring approaches, where necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.