Abstract

Thermal imaging has been applied to detect possible temperature variations in various rheumatic disorders. This study sought to determine whether rheumatoid arthritis (RA) patients without active synovitis in their hands exhibit different baseline thermographic patterns of the fingers and palms when compared to healthy individuals. Data from 31 RA patients were compared to that of 51 healthy controls. The RA patients were recruited upon confirmed absence of synovitis by clinical examination and musculoskeletal ultrasound. Participants underwent medical infrared imaging of the regions of interest (ROIs). Significant differences were found between the mean temperatures of the palm regions (29.37 °C (SD2.2); n = 306) and fingers (27.16 °C (SD3.2); n = 510) of the healthy participants when compared to the palm regions (31.4(SD1.84)°C; n = 186) and fingers (30.22 °C (SD2.4); n = 299) of their RA counterparts (p = 0.001), with the latter group exhibiting higher temperatures in all ROIs. Logistic regression models confirm that both palm and finger temperature increase significantly in RA without active inflammation. These innovative findings provide evidence that baseline thermal data in RA differs significantly from healthy individuals. Thermal imaging may have the potential to become an adjunct assessment method of disease activity in patients with RA.

Highlights

  • Thermal imaging has been applied to detect possible temperature variations in various rheumatic disorders

  • The probability curves (Fig. 2) clearly show that the likelihood of rheumatoid arthritis increases as the finger temperature increases. This is the first study exploring thermographic patterns of patients with RA comparing them to healthy controls

  • Our results have clearly shown that an RA hand without active synovitis exhibits higher temperatures when compared to healthy individuals, with particular thermal properties as outlined in the fitted Logistic regression models

Read more

Summary

Introduction

Thermal imaging has been applied to detect possible temperature variations in various rheumatic disorders. This study sought to determine whether rheumatoid arthritis (RA) patients without active synovitis in their hands exhibit different baseline thermographic patterns of the fingers and palms when compared to healthy individuals. Significant differences were found between the mean temperatures of the palm regions (29.37 °C (SD2.2); n = 306) and fingers (27.16 °C (SD3.2); n = 510) of the healthy participants when compared to the palm regions (31.4(SD1.84)°C; n = 186) and fingers (30.22 °C (SD2.4); n = 299) of their RA counterparts (p = 0.001), with the latter group exhibiting higher temperatures in all ROIs. Logistic regression models confirm that both palm and finger temperature increase significantly in RA without active inflammation. Logistic regression models confirm that both palm and finger temperature increase significantly in RA without active inflammation These innovative findings provide evidence that baseline thermal data in RA differs significantly from healthy individuals. Whilst a study reports that while there may be a role for thermography in assessment of larger joints, it does not appear to be an effective modality for the small joints of the Regions Palms (medial, central and Lateral ROIs) Rt/Lt (Healthy) Palms (medial, central and Lateral ROIs) Rt/Lt (RA) Fingers Rt/Lt (Healthy) Fingers Rt/Lt (RA)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.