Abstract

Objective: The most widely implanted prosthetic valves are the mechanical bileaflets, most of which have good forward flow hemodynamics. However, recent clinical experiences illustrate the importance of understanding the flow structures generated within the hinge. The purpose of this study was to evaluate the hinge-flow dynamics of two new variations of a 17-mm St Jude Medical bileaflet valve: the Hemodynamic Plus and the Regent (St Jude Medical, Inc, St Paul, Minn). Methods: Clinical quality reproductions of the valves were manufactured with clear housings. Laser Doppler velocimetry velocity and turbulent shear stress measurements were conducted within the hinge and thumbnail regions of the valves. Results: In the 17-mm Hemodynamic Plus hinge, a rotating flow structure developed in the inflow pocket during forward flow. During systole, velocities through the hinge pocket reached 0.70 m/s, and the turbulent shear stress reached 1000 dynes/cm2. In the thumbnail, forward flow velocities ranged from 1.4 m/s to 1.7 m/s. In the 17-mm Regent hinge, a rotating flow structure partially developed in the inflow pocket during forward flow. During systole, velocities through the hinge pocket reached 0.75 m/s, and the turbulent shear stress reached 1300 dynes/cm2. In the thumbnail, forward flow velocities ranged from 1.0 m/s to 1.3 m/s. Conclusions: The active leaflet motion through the St Jude Medical hinge creates a washout pattern that restricts the persistence of stagnation zones and thus may be a contributing factor to its successful clinical performance. The hinge and thumbnail flow dynamics of the 17-mm Regent valve are at least equivalent to, and possibly superior to, those of the 17-mm Hemodynamic Plus valve. (J Thorac Cardiovasc Surg 2000;119:83-93)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.