Abstract

Generalization is an important issue in machine learning. In fact, in several applications good results over training data are not as important as good results over unseen data. While this problem was deeply studied in other machine learning techniques, it has become an important issue for genetic programming only in the last few years. In this paper we compare the generalization ability of several different genetic programming frameworks, including some variants of multi-objective genetic programming and operator equalization, a recently defined bloat free genetic programming system. The test problem used is a hard regression real-life application in the field of drug discovery and development, characterized by a high number of features and where the generalization ability of the proposed solutions is a crucial issue. The results we obtained show that, at least for the considered problem, multi-optimization is effective in improving genetic programming generalization ability, outperforming all the other methods on test data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.