Abstract

A growing significance of flexible steam turbine operation challenges the control of turbines, as part load operation using control valves can be accompanied by highly unsteady flow conditions. The increased dynamic load induced by pressure forces can reduce the reliable operating range, weaken the valve, and lead to mechanical failures. The geometry of the valve plays a major role in the reduction of dynamic forces. Using a scaled control valve, experiments were conducted with a focus on the dynamic behavior of the valve head. A spherical valve shape favoring unstable operation was used as a reference case, and the desired instability was proven by measurements. Different modified valve geometries based on literature featuring separation edges were then tested against the spherical shape. Results indicate the improved stability of the modified geometries over the reference geometry. For most of the operating range, vibrations were drastically reduced, and the overall flow stabilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.