Abstract

A small short muscle frequently acts across a joint in parallel with a vastly larger and longer muscle; therefore it should play a minimal role in the mechanical control of that joint. This study provides evidence suggesting that the small member of such a "parallel muscle combination" (PMC) may serve an important sensory feedback role. The spindle densities of large and small members of PMCs in man and the dog were determined and compared. Epaxial PMCs controlling canine intervertebral joints were dissected and tissue samples were embedded in paraffin, sectioned transversely to the muscles' long axis and, stained with hematoxylin-periodic acid-Schiff (PAS). Representative tissue sections were projected on to stereological grids and the percentage volume of spindles was determined. Data existing in the literature were used to ascertain spindle densities in human PMCs controlling joints in the cervico-occipital region and the extremities. The spindle density for each muscle in a group of PMCs controlling a particular motion was listed, and the mean spindle densities were determined for both the large and the small members of the group. Student's unpaired t test was used to determine the significance of the differences between mean spindle densities. Linear regression was calculated and the data were plotted graphically. In all PMCs examined, the spindle density of the small muscles was significantly higher than that of their large counterparts. It is therefore proposed that the small muscles of PMCs may function as "kinesiological monitors" generating important proprioceptive feedback to the central nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.