Abstract

Since the publication of the Earth gravitational model (EGM)96 considerable improvements in the observation techniques resulted in the development of new improved models. The improvements are due to the availability of data from dedicated gravity mapping missions (CHAMP, GRACE) and to the use of 5′ × 5′ terrestrial and altimetry derived gravity anomalies. It is expected that the use of new EGMs will further contribute to the improvement of the resolution and accuracy of the gravity and geoid modeling in continental and regional scale. To prove this numerically, three representative Earth gravitational models are used for the reduction of several kinds of data related to the gravity field in different places of the Earth. The results of the reduction are discussed regarding the corresponding covariance functions which might be used for modeling using the least squares collocation method. The contribution of the EIGEN-GL04C model in most cases is comparable to that of EGM96. However, the big difference is shown in the case of EGM2008, due not only to its quality but obviously to its high degree of expansion. Almost in all cases the variance and the correlation length of the covariance functions of data reduced to this model up to its maximum degree are only a few percentages of corresponding quantities of the same data reduced up to degree 360. Furthermore, the mean value and the standard deviation of the reduced gravity anomalies in extended areas of the Earth such as Australia, Arctic region, Scandinavia or the Canadian plains, vary between −1 and +1 and between 5 and 10 × 10−5 ms−2, respectively, reflecting the homogenization of the gravity field on a regional scale. This is very important in using least squares collocation for regional applications. However, the distance to the first zero-value was in several cases much longer than warranted by the high degree of the expansion. This is attributed to errors of medium wavelengths stemming from the lack of, e.g., high-quality data in some area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.