Abstract

On the basis of a comparison of radio data and model calculations of Jupiter's synchrotron radiation the ‘hot region’ or east‐west asymmetry in the planet's radiation belts is proposed to be due to the combined effect of an overabundance of electrons at jovicentric longitudes λJ ∼240°–360° and the existence of a dusk to dawn directed electric field over the inner magnetosphere, generated by the wind system in the upper atmosphere. The model calculations were based upon the magnetic field configurations derived from the Pioneer data by Acuna and Ness [1976] (the O4 model) and Davis, Jones and Smith (quoted in Smith and Gulkis [1979]) (the P11 (3,2)A model), with an electron distribution derived in the first paper of this series [de Pater, this issue]. We would infer from the calculations that the O4 model gives a slightly better fit to the data; the relatively large number density at λJ ∼240°–360°, however, might indicate the presence of even higher order moments in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.