Abstract

This study evaluates the accuracy of a set of techniques that approximate the solution of continuous-time Dynamic Stochastic General Equilibrium models. Using the neoclassical growth model, I compare linear-quadratic, perturbation, and projection methods. All techniques are applied to the Hamilton–Jacobi–Bellman equation and the optimality conditions that define the general equilibrium of the economy. Two cases are studied depending on whether a closed-form solution is available. I also analyze how different degrees of non-linearities affect the approximated solution. The results encourage the use of perturbations for reasonable values of the structural parameters of the model and suggest the use of projection methods when a high degree of accuracy is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.