Abstract
There are several procedures for fitting generalized additive models, i.e. regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data are used to compare a smoothing parameter optimization approach for selection of smoothness and of covariates, a stepwise approach, a mixed model approach, and a procedure based on boosting techniques. In particular it is investigated how the performance of procedures is linked to amount of information, type of response, total number of covariates, number of influential covariates, and extent of non-linearity. Measures for comparison are prediction performance, identification of influential covariates, and smoothness of fitted functions. One result is that the mixed model approach returns sparse fits with frequently over-smoothed functions, while the functions are less smooth for the boosting approach and variable selection is less strict. The other approaches are in between with respect to these measures. The boosting procedure is seen to perform very well when little information is available and/or when a large number of covariates is to be investigated. It is somewhat surprising that in scenarios with low information the fitting of a linear model, even with stepwise variable selection, has not much advantage over the fitting of an additive model when the true underlying structure is linear. In cases with more information the prediction performance of all procedures is very similar. So, in difficult data situations the boosting approach can be recommended, in others the procedures can be chosen conditional on the aim of the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.