Abstract
Recent moves to consider misogyny as a hate crime have refocused efforts for owners of web properties to detect and remove misogynistic speech. This paper considers the use of deep learning techniques for detection of misogyny in Urban Dictionary, a crowdsourced online dictionary for slang words and phrases. We compare the performance of two deep learning techniques, Bi-LSTM and Bi-GRU, to detect misogynistic speech with the performance of more conventional machine learning techniques, logistic regression, Naive-Bayes classification, and Random Forest classification. We find that both deep learning techniques examined have greater accuracy in detecting misogyny in the Urban Dictionary than the other techniques examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.