Abstract
In recent years, the estimation of human sleep disorders from Electroencephalogram (EEG) signals have played an important role in developing automatic detection of sleep stages. A few methods exist in the market presently towards this aim. However, sleep physicians may not have full assurance and consideration in such methods due to concerns associated with systems accuracy, sensitivity and specificity. This paper presents a novel and efficient technique that can be implemented in a microcontroller device to identify sleep stages in an effort to assist physicians in the diagnosis and treatment of related sleep disorders by enhancing the accuracy of the developed algorithm using a single channel of EEG signals. First, the dataset of EEG signal is filtered and decomposed into delta, theta, alpha, beta and gamma subbands using Butterworth band-pass filters. Second, a set of sample statistical discriminating features are derived from each frequency band. Finally, sleep stages consisting of Wakefulness, Rapid Eye Movement (REM) and Non-Rapid Eye Movement (NREM) are classified using several supervised machine learning classifiers including multi-class Support Vector Machines (SVM), Decision Trees (DT), Neural Networks (NN), K-Nearest Neighbors (KNN) and Naive Bayes (NB). This paper combines REM with Stage 1 NREM due to data similarities. Performance is then compared based on single channel EEG signals that were obtained from 20 healthy subjects. The results show that the proposed technique using DT classifier efficiently achieves high accuracy of 97.30% in differentiating sleeps stages. Also, a comparison of our method with some recent available works in the literature reiterates the high classification accuracy performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.