Abstract

1 The mode of Ca(2+) channel blocking by gabapentin [1-(aminomethyl)cyclohexane acetic acid] was compared to those of other Ca(2+) channel blockers, and the potential role of Ca(2+) channel antagonists in providing protection against hypoxic injury was subsequently investigated in rat cerebrocortical slices. 2 mRNA for the alpha(2)delta subunits of Ca(2+) channels was found in rat cerebral cortex. 3 Nitric oxide (NO) synthesis estimated from cGMP formation was enhanced by KCl stimulation, which was mediated primarily by the activation of N- and P/Q-type Ca(2+) channels. Gabapentin blocked both types of Ca(2+) channels, and preferentially reversed the response to 30 mM K(+) stimulation compared with 50 mM K(+) stimulation. In contrast, verapamil preferentially inhibited the response to depolarization by the higher concentration (50 mM) of K(+). 4 Gabapentin inhibited KCl-induced elevation of intracellular Ca(2+) in primary neuronal culture. 5 Hypoxic injury was induced in cerebrocortical slices by oxygen deprivation in the absence (severe injury) or presence of 3 mM glucose (mild injury). Gabapentin preferentially inhibited mild injury, while verapamil suppressed only severe injury. omega-Conotoxin GVIA (omega-CTX) and omega-agatoxin IVA (omega-Aga) were effective in both models. 6 NO synthesis was enhanced in a manner dependent on the severity of hypoxic insults. Gabapentin reversed the NO synthesis induced by mild insults, while verapamil inhibited that elicited by severe insults. omega-CTX and omega-Aga were effective in both the cases. 7 Therefore, the data suggest that gabapentin and verapamil cause activity-dependent Ca(2+) channel blocking by different mechanisms, which are associated with their cerebroprotective actions and are dependent on the severity of hypoxic insults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.