Abstract

Study objectiveTo compare the effects of biphasic defibrillation waveforms and conventional monophasic defibrillation waveforms on the success of initial defibrillation, postresuscitation myocardial function, and duration of survival after prolonged duration of untreated ventricular fibrillation (VF), including the effects of epinephrine. DesignProspective, randomized, animal study. SettingAnimal laboratory and university-affiliated research and educational institute. ParticipantsDomestic pigs. InterventionsVF was induced in 20 anesthetized domestic pigs receiving mechanical ventilation. After 10 min of untreated VF, the animals were randomized. Defibrillation was attempted with up to three 150-J biphasic waveform shocks or a conventional sequence of 200-J, 300-J, and 360-J monophasic waveform shocks. When reversal of VF was unsuccessful, precordial compression was performed for 1 min, with or without administration of epinephrine. The protocol was repeated until spontaneous circulation was restored or for a maximum of 15 min. Measurements and resultsNo significant differences in the success of initial resuscitation or in the duration of survival were observed. However, significantly less impairment of myocardial function followed biphasic shocks. Administration of epinephrine reduced the total electrical energy required for successful resuscitation with both biphasic and monophasic waveform shocks. ConclusionsLower-energy biphasic waveform shocks were as effective as conventional higher-energy monophasic waveform shocks for restoration of spontaneous circulation after 10 min of untreated VF. Significantly better postresuscitation myocardial function was observed after biphasic waveform defibrillation. Administration of epinephrine after prolonged cardiac arrest decreased the total energy required for successful resuscitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.