Abstract
NiTi and Ti porous specimens with appropriate pore characteristics for biomedical applications are produced by space holder method. Porosities of the specimens linearly increase from 14 to 65 and 42 to 70% for the Ti and NiTi specimens, respectively, with the urea space holder. Mechanical properties such as stiffness, fracture strain, and strength of the porous NiTi and Ti are adjustable with pore characteristics. The apparent elasticity modulus of NiTi specimens decrease from 3.5 to 0.73 GPa as porosity increases. Since the initial linear part of the stress-strain curve consists of elastic behavior, formation of stress-induced martensite, deformation and/or detwinning of martensite variants, and plastic deformation, the unloading slope of stress-strain curves is a better approximation for the elasticity modulus of the NiTi porous specimens as it is proved by an isotropic cubic cell model. The unloading slope of the NiTi specimen with 61% porosity is 3.1 GPa, while the apparent elasticity or loading slope is 0.85 GPa. In comparison to Ti, the high, recoverable strain of NiTi improves capability of it as a good candidate for bone replacement. Moreover, in contrast to Ti specimens, hysteresis loops are clearly observed in the stress-strain curves of NiTi specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.