Abstract

It has been found that metyrapone can inhibit both type I and type II mixed-function oxygenase reactions, while cysteamine inhibits only type I activity in this mammalian system. Following pretreatment with phenobarbital and 3-methylcholanthrene the half-maximal inhibiting concentrations for the O-demethylation of paranitranisol are increased for cysteamine and decreased for metyrapone. Both cysteamine and metyrapone give type II binding spectra with oxidized cytochrome P-450. The negative and positive peaks are at 393 and 426 nm respectively for metyrapone, and 410 and 434 nm for cysteamine. Cysteamine showed no binding comparable to that of metyrapone for reduced cytochrome P-450. Metyrapone showed little or no inhibition of the NADH cytochrome- c reductase (EC 1.6.1.1) or NADPH (EC 1.6.2.3) cytochrome- c reductase while cysteamine had a more or less strong inhibiting effect depending on the pretreatment of animals. Neither the binding to P-450 heme nor the inhibition of NADH and NADPH cytochrome- c reductase correlates well with cysteamine inhibition of total activity. It is therefore suggested that cysteamine reacts with an intermediate electron carrier of non-heme iron or glycoprotein character thus inhibiting mixed-function oxygenase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.