Abstract

Free-energy profiles describing the relative orientation of membrane proteins along predefined coordinates can be efficiently calculated by means of umbrella simulations. Such simulations generate reliable orientational distributions but are difficult to converge because of the very long equilibration times of the solvent and the lipid bilayer in explicit representation. Two implicit lipid membrane models are here applied in combination with the umbrella sampling strategy to the simulation of the transmembrane (TM) helical segment from virus protein U (Vpu). The models are used to study both orientation and energetics of this α-helical peptide as a function of hydrophobic mismatch. We observe that increasing the degree of positive hydrophobic mismatch increased the tilt angle of Vpu. These findings agree well with experimental data and as such validate the solvation models used in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.