Abstract
In this work, GdMnO3 ceramics were synthesized by solid state reaction and sol-gel methods, and the structure, defects and optical, dielectric and magnetic properties of the synthesized samples were comparatively investigated. The samples synthesized by different methods show a single phase structure without any detectable impurities. The SEM results suggest that the particle size of the specimen obtained by the solid phase route is on the micron scale, while that of the specimen fabricated by the sol-gel route is on the nanometer scale. Compared with the ceramic fabricated by solid-state reaction technology, the specimen synthesized by sol-gel technique possesses lower oxygen vacancies and Mn2+ concentration, and Mn3+ concentration. The positron annihilation analyses show that the cation vacancy concentration of the specimen synthesized by the solid phase approach is higher than that of the specimen synthesized via the sol-gel approach. The compound obtained by the solid phase reaction has better dielectric properties than that obtained with the sol-gel method. The magnetic transition temperature and the effective magnetic moment are influenced by the Mn ion valence state in GdMnO3. The stronger magnetization of the ceramic synthesized via the sol-gel approach is associated with the lower concentration of cation vacancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.