Abstract

In this study, we have carried out a comparative analysis of a fixed bed reactor (FBR) and reverse flow chromatographic reactor (RFCR) for a series reaction. This comparison has been carried out using mathematical model based single and multi-objective optimization. In addition, since the model merely approximates the actual process, there is an inherent presence of uncertainty in it. To account for the uncertainty, optimization is done considering the uncertainty in the key model parameters. Three objective functions are used in this work for the comparative study, namely yield, selectivity, and conversion. The decision variables used in the optimization problem are the inlet concentration, Damkohler number, and dimensionless switching time. The multi-objective optimization results have been analysed in terms of optimal Pareto fronts for three bi-objective and one tri-objective optimization problems. A detailed analysis of the Pareto fronts for both the reactors is presented for five distinct representative Pareto points. The results of the work indicated the superiority of RFCR over FBR. In particular, a representative Pareto point solution of 3-objective problem in RFCR corresponds to 51.36% higher yield, 27.06% higher selectivity and 19.15% higher conversion as compared to FBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.