Abstract

<p>Los métodos de regresión se utilizan ampliamente en el ámbito forestal para la predicción y el cartografiado de las variables de estructura y combustibilidad. En este artículo se evalúan diferentes modelos de regresión (lineal, no lineal, árboles de regresión y ensemble). Como variables independientes se utilizaron métricas extraídas de datos LiDAR full-waveform, mientras que los valores de las variables dependientes se generaron a partir de modelos basados en datos de campo obtenidos para 78 parcelas de 16 m de radio. Se llevaron a cabo transformaciones de las variables dependientes e independientes con selección de atributos para evaluar su influencia en la predicción de la variable respuesta. Con el fin de verificar diferencias significativas y ordenar los modelos de regresión se emplearon los tests no paramétricos de Wilcoxon y Friedman, y el análisis post-hoc o los tests de comparación post-hoc por pares, como el de Nemenyi, para el test de Friedman. Las regresiones basadas en la transformación de la variable dependiente, como raíz cuadrada o logaritmo, o en la transformación de las variables independientes, obtuvieron un incremento de la R<sup>2</sup> de hasta un 6% con respecto a la regresión lineal. Mediante el método CART (Classification and Regression Tree) se obtuvieron resultados discretos, si bien su uso puede estar indicado para la categorización o estratificación. Con el método basado en la transformación de la variable dependiente mediante raíz cuadrada se consiguieron los mejores resultados comparativos en la predicción de variables forestales, excepto para el volumen. Sin embargo, su uso no siempre implica una mejora significativa con respecto a los otros métodos de regresión usados en este trabajo.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.