Abstract

Graph kernels have evolved as a promising and popular method for graph clustering over the last decade. In this work, comparative study on the five standard graph kernel techniques for graph clustering has been performed. The graph kernels, namely vertex histogram kernel, shortest path kernel, graphlet kernel, k-step random walk kernel, and Weisfeiler-Lehman kernel have been compared for graph clustering. The clustering methods considered for the kernel comparison are hierarchical, k-means, model-based, fuzzy-based, and self-organizing map clustering techniques. The comparative study of kernel methods over the clustering techniques is performed on MUTAG benchmark dataset. Clustering performance is assessed with internal validation performance parameters such as connectivity, Dunn, and the silhouette index. Finally, the comparative analysis is done to facilitate researchers for selecting the appropriate kernel method for effective graph clustering. The proposed methodology elicits k-step random walk and shortest path kernel have performed best among all graph clustering approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.