Abstract
Today, people increasingly leverage their online social networks to discover meaningful and relevant information, products and services. Thus, the ability to identify reputable online contacts with whom to interact has become ever more important. In this work we describe a generic approach to modeling user and item reputation in social recommender systems. In particular, we show how the various interactions between producers and consumers of content can be used to create so-called collaboration graphs, from which the reputation of users and items can be derived. We analyze the performance of our reputation models in the context of the HeyStaks social search platform, which is designed to complement mainstream search engines by recommending relevant pages to users based on the past experiences of search communities. By incorporating reputation into the existing HeyStaks recommendation framework, we demonstrate that the relevance of HeyStaks recommendations can be significantly improved based on data recorded during a live-user trial of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.