Abstract

Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants.

Highlights

  • Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, several key secondary metabolites [1]

  • Our present results show that a subset of the differentially expressed proteins were involved in glycolysis and tricarboxylic acid (TCA), such as NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-dependent GAPDH), dihydrolipoyl dehydrogenase (DLD), pyruvate dehydrogenase E3 subunit (PDE3), dihydrolipoamide succinyltransferase component of

  • A positive correlation between catechin content and the gene expression of Phenylalanine ammonia-lyase (PAL) was observed under drought stress, after wounding and after abscisic acid treatment [35]. The expression of both the PAL gene and protein were inhibited, and the catechin content was reduced in young, expanding leaves. These results indicated that the carbon flux from phenylalanine into the biosynthesis of secondary metabolites was inhibited in the young, expanding leaves compared with the buds

Read more

Summary

Introduction

Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, several key secondary metabolites [1]. A previous study showed that during seeding development, total catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) decreased, whereas the epigallocatechin (EGC) content increased [3]. An analysis of purine alkaloids in different parts of the seedlings showed that the caffeine and theobromine content was greater in young leaves and decreased with increasing leaf maturity, and the levels of tea caffeine synthase (TCS) transcripts were highest in young leaves and declined markedly during leaf development [8,9]. Different levels of metabolites in tea leaves are likely characterized by diverse gene and protein expression profiles at each developmental stage

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.