Abstract

Sustained release drug formulations are frequently developed to reduce dosage frequency and to improve outcomes of drug therapy. This study evaluates the pharmacokinetic (PK) parameters of a novel injectable danofloxacin (DANO) formulation in comparison with a conventional product in an animal model. A recently synthesized DANO formulation, prepared by incorporation of DANO-loaded mesoporous silica nanoparticles in liposomes and integration of liposomes in chitosan and β-glycerophosphate solution (lipogel) along with the conventional DANO product were injected subcutaneously (SC) in rabbits. Blood samples were collected at specific time points and DANO concentrations in plasma samples were measured. The PK parameters including maximum concentration (Cmax), time to reach Cmax (Tmax), area under the concentration versus time curves (AUC), area under the first moment concentration-time curve (AUMC) and mean residence time (MRT) were studied by non-compartmental analyses. The values of MRT (156.00 ± 20.00 hr), AUC (15.30 ± 3.00 µg mL-1 per hr) and Tmax (4.70 ± 1.60 hr) for lipogel formulation were higher than those of the conventional product (8.50 ± 3.60 hr, 3.70 ± 2.00 µg mL-1 per hr and 0.80 ± 0.26 hr, respectively). However, Cmax values for lipogel formulation (0.41 ± 0.15 µg mL-1) were significantly lower than those of the conventional drug product (0.68 ± 0.09 µg mL-1). It was concluded that the novel DANO lipogel effectively slowed down the drug absorption and the incorporation of liposomes in hydrogel could be a useful approach to maintain the therapeutic drug level for a longer period; however, more studies are needed in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.