Abstract
Solar photovoltaic (PV) technology has a lower adoption rate than expected because of different weather conditions (sunny, cloudy, windy, rainy, and stormy) and high material manufacturing costs. To overcome the barriers to adoption, many researchers are developing methods to increase its performance. A photovoltaic–thermal absorber hybrid system may shift its performance, but to become more efficient, the technology could improve with some strong thermal absorber materials. A phase change material (PCM) could be a suitable possibility to enhance the (electrical and thermal) PV performance. In this study, a solar PVT hybrid system is developed with a PCM and analyzed for comparative performance based on Malaysian weather conditions. The result shows PV performance (both electrical and thermal) was increased by utilizing PCMs. Electrical and thermal efficiency measurements for different collector configurations are compared, and PV performance and temperature readings are presented and discussed. The maximum electrical and thermal efficiency found for PVT and PVT-PCM are 14.57% and 15.32%, and 75.29% and 86.19%, respectively. However, the present work may provide extensive experimental methods for developing a PVT-PCM hybrid system to enhance electrical and thermal performance and use in different applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.