Abstract

Vibration monitoring of rolling element bearings is probably the most established diagnostic technique for rotating machinery. The application of acoustic emission (AE) for bearing diagnosis is gaining ground as a complementary diagnostic tool, however, limitations in the successful application of the AE technique have been partly due to the difficulty in processing, interpreting and classifying the acquired data. Furthermore, the extent of bearing damage has eluded the diagnostician. The experimental investigation reported in this paper was centred on the application of the AE technique for identifying the presence and size of a defect on a radially loaded bearing. An experimental test rig was designed such that defects of varying sizes could be seeded onto the outer race of a test bearing. Comparisons between AE and vibration analysis over a range of speed and load conditions are presented. In addition, the primary source of AE activity from seeded defects is investigated. It is concluded that AE offers earlier fault detection and improved identification capabilities than vibration analysis. Furthermore, the AE technique also provided an indication of the defect size, allowing the user to monitor the rate of degradation on the bearing; unachievable with vibration analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.