Abstract

Gearboxes transfer rotational motion and handle precision functionalities in many fields, including aviation, wind turbines, and industrial services. Their health management is essential to minimize workforce risks, increase the level of safety, and avoid machine breakdowns. From this standpoint, the present experimental research work developed a convolutional neural network-based method for diagnosing different levels of tooth root cracks (25 %-50 %-75 %-100 %) for symmetric (20°/20°) and asymmetric (20°/30°) profiled gear pairs. A series of vibration experiments were performed on a one-stage spur gearbox to achieve this by using a tri-axial accelerometer under variable working loads. The main purpose of this experimental research study is to explore the influence of the tooth profile on spur gears’ vibration responses and whether utilizing an asymmetric tooth profile would positively impact a deep learning algorithm's classification accuracy to add to the enhancements it provides in terms of fatigue life, mesh stiffness, and impact strength. Experimental results revealed that the overall classification accuracy could be increased by 7.712 % by feeding the proposed deep learning model with vibration data measured using test samples with asymmetric teeth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.