Abstract

The objective of this study is to analyze the energy consumption associated with modern methodologies utilized in wireless sensor networks and to conduct a comparative assessment with Reed Solomon (RS) codes. This paper presents three discrete techniques for wireless sensor networks. The strategies mentioned include the Self-Evolving Sensor System (SESS), the Secure and Adaptive Key Management utilizing Multipath Routing Protocol (SAKM-MRP), and the National Instruments Secure Reference-based Data Aggregation (NI-SRDA). A distinct algorithm was developed for each method to examine the energy use. Based on the experimental results, it has been shown that the RS-codes approach consumes a considerably greater quantity of energy compared to the SESS methods, which, in contrast, exhibit a significantly lower energy consumption. When comparing the efficiency of RS-codes and SESS methods, it is observed that the SAKN-MRP technique exhibits a more significant decrease in energy consumption. Compared to the RS-Codes system, the SESS scheme stands out with a significant 45.5% reduction in energy usage at the maximum delivery node. Similarly, the SAKM-MRP scheme showcases an average decrease of 35.7% in energy consumption. Notably, the NI-SRDA scheme achieves an impressive 60% reduction in energy consumption, underscoring its remarkable impact on energy efficiency. In a broader sense, it can be inferred that the NI-SDRA technique holds promise as an energy-efficient solution for wireless sensor networks in comparison to alternative strategies suggested in the current study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.