Abstract
The rapid development of ultrawideband (UWB) communication systems has resulted in increasing performance requirements for the antenna system. In addition to a wide bandwidth, fast propagation rates and compact dimensions, flexibility, wearability or portability are also desirable for UWB antennas, as are excellent notch characteristics. Although progress has been made in the development of flexible/wearable antennas desired notch properties are still rather limited. Moreover, most presently available flexible UWB antennas are fabricated using environmentally not attractive subtractive etching-based processes. The usage of facile additive sustainably inkjet printing processes also utilizing low temperature plasma-activated conductive inks is rarely reported. In addition, the currently used tri-notched flexible UWB antenna designs have a relatively large footprint, which poses difficulties when integrated into miniaturized and compact communication devices. In this work, a silver nano ink is used to fabricate the antenna via inkjet printing and an efficient plasma sintering procedure. For the targeted UWB applications miniaturized tri-notched flexible antenna is realized on a flexible polyethylene terephthalate (PET) substrate with a compact size of 17.6 mm × 16 mm × 0.12 mm. The antenna operates in the UWB frequency band (2.9–10.61 GHz), and can shield interferences from WiMAX (3.3–3.6 GHz), WLAN (5.150–5.825 GHz) and X-uplink (7.9–8.4 GHz) bands, as well as exhibits a certain of bendability. Three nested "C" slots of different sizes were adopted to achieve notch features. The simulation and test results demonstrate that the proposed antenna can generate signal radiation in the desired UWB frequency band while retaining the desired notch properties and having acceptable SAR values on-body, making it a viable candidate for usage in flexible or wearable communication transmission devices. The research provides a facile and highly efficient method for fabricating flexible/wearable UWB antennas, that is, the effective combination of inkjet printing processing, flexible substrates, low temperature-activated conductive ink and antenna structure design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.