Abstract
We describe a method for accelerating a thin (~1 mm thick) striker with a diameter of 35 mm in a shock tube channel up to velocities above to ~275 m/s under the pressure of detonation products of acetylene–oxygen fuel mixture. Impact of this striker on a ~1-cm-thick water layer generates a nonstationary decaying shock wave (Taylor wave) with amplitude of ~0.2 GPa on escape from the free surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.