Abstract

ABSTRACT The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous ‘inside–out’ multiwavelength outburst in Spring 2013, and a dramatic Seyfert-type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search for the jet activity associated with this variable accretion activity, we carried out multiresolution and multiwavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about 2 pc in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of ∼1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the ‘inside–out’ outburst of 2013. Moreover, we report that most optically selected changing-look active galactic nuclei (AGN) at z < 0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.