Abstract

The 5'-non-translated regions (5'NTR) of human immunoglobulin heavy chain binding protein (BiP), Antennapedia (Antp) ofDrosophilaand human fibroblast growth factor 2 (FGF-2) mRNAs are reported to mediate translation initiation by an internal ribosome binding mechanism. In this study, we investigate predicted features of the higher order structures folded in these 5'NTR sequences. Statistical analyses of RNA folding detected a 92 nt unusual folding region (UFR) from 129 to 220, close to the initiator AUG in the BiP mRNA. Details of the structural analyses show that the UFR forms a Y-type stem-loop structure with an additional stem-loop in the 3'-end resembling the common structure core found in the internal ribosome entry site (IRES) elements of picornavirus. The Y-type structural motif is also conserved among a number of divergent BiP mRNAs. We also find two RNA elements in the 5'-leader sequence of human FGF-2. The first RNA element (96 nt) is 2 nt upstream of the first CUG start codon located in the reported IRES element of human FGF-2. The second (107 nt) is immediately upstream of the authentic initiator AUG of the main open reading frame. Intriguingly, the folded RNA structural motif in the two RNA elements is conserved in other members of FGF family and shares the same structural features as that found in the 5'NTR of divergent BiP mRNAs. We suggest that the common RNA structural motif conserved in the diverse BiP and FGF-2 mRNAs has a general function in the internal ribosome binding mechanism of cellular mRNAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.