Abstract

Orphan and conventional kinesin dimers represent two families of the kinesin superfamily molecular motors. Conventional kinesin, having a 14-residue neck linker (NL) in each head, can step processively on microtubule (MT), with an ATP hydrolysis being coupled with a mechanical stepping under no load. Orphan kinesin phragmoplast-associated kinesin-related protein 2 (PAKRP2) dimer, despite having a NL of 32 residues in each head, can also step processively on MT and exhibits tight chemomechanical coupling under no load. However, the dynamic properties of the wild type PAKRP2 and the mutant one with each NL truncated to 14 residues are very different from those of the wild type conventional kinesin and the mutant one with each NL being replaced by the 32-residue NL from PAKRP2. Here, based on a common chemomechanical coupling model we study computationally the dynamics of the two families of the kinesin dimers, with the simulated results explaining quantitatively the available experimental data. The large differences in the dynamics between the two families of kinesin dimers arise mainly from different rate constants of NL docking and ATPase activity and different weak affinities of the head in ADP state for MT. The studies indicate that both the orphan kinesin PAKRP2 and conventional kinesin use the same mechanism for processive motility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.