Abstract

This paper discusses component age-related degradation and failure initiated from a shared cause and coupling factor (or mechanism) and the likelihood of the resulting common cause failure (CCF). For these components a CCF model that includes the impacts of any maintenance-related renewal is proposed. Limitations and gaps in the state-of-the-art parametric CCF models for properly handling impacts of shared causes leading to accelerated degradation and aging have been discussed. The proposed approach characterizes the likelihood of CCF based on the conventional parametric CCF model, but unlike the parametric CCF models, time-dependent CCF parameters are estimated from the degradation states including any component rejuvenation achieved through preventive maintenance. Accelerated degradation tests of three identical centrifugal pumps under shared but harsh operating conditions generated several types of sensor monitoring data until failure. Correlation between the sensor monitoring data and observed aging and pump failure times were used to infer the degradation states of the pumps tested. The results concluded that undetected shared causes that could accelerate degradation and aging, for example due to poor maintenance, could significantly affect the CCF parametric model and CCF probability. This could potentially underestimate risk estimates as the undetected components degradation accumulates. The proposed parametric CCF model would be able to determine component-specific dynamic CCF probability, for condition monitored comments using sensor information relatable to degradation and aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.