Abstract

Numerical modelling of a series of experimental Single Edge V-Notched Beam tests was carried out for a number of grades of polycrystalline cubic boron nitride using the finite volume method (FV) and cohesive zone model approach. The effect of notch root radius observed experimentally was reproduced numerically via a unique CZM for each material examined. It was also found that the shape of the cohesive zone model can be significant, especially when the material has a relatively high fracture energy. It was also demonstrated that the experimentally observed drop in fracture toughness with increase in test rate was not explainable in terms of the system dynamics. It was found that in order to predict the experimental fracture loads for a range of loading rates, it was necessary to modify the CZM in such a way as to preserve the micro-structural length scale information of the material embedded within the CZM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.