Abstract

This paper addresses the problem of developing an optimization model to aid the operational scheduling in a real-world pipeline scenario. The pipeline connects refinery and harbor, conveying different types of commodities (gasoline, diesel, kerosene, etc.). An optimization model was developed to determine pipeline scheduling with improved efficiency. This model combines constraint logic programming (CLP) and mixed integer linear programming (MILP) in a CLP-MILP approach. The proposed model uses decomposition strategies, continuous time representation, intervals that indicate time constraints (time windows), and a series of operational issues, such as the seasonal and hourly cost of electric energy (on-peak demand hours). Real cases were solved in a matter of seconds. The computational results have demonstrated that the model is able to define new operational points to the pipeline, providing significant cost savings. Indeed the CLP-MILP model is an efficient tool to aid operational decision-making within this real-world pipeline scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.